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1. Introduction
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ability. Explainable AI (XAI) systems may provide
human-understandable interpretations of black-box
ML models to increase the accountability and real-
world deployment of ML-based NIDS. Recently it has
been brought to light that a sub-class of XAI, black-

Adversarial objectives

We assume that the goal of the adversary is
v v v to deploy an adversarial model into an intru-

box post-hoc explainers, is vulnerable to adversarial Network Manager sion detection system in a subtle manner that
(scaffolding) attacks. Scaffolding attacks would cause \ will be oblivious to the XAI methods trying
malicious models to slip through auditing processes. Competitor service to capture any internal biases. If the attack

Such an attack could have ramifications towards se- becomes successful, then it will classify traf-
curity operators, regulators, auditors, and end-users. Figure 1: NIDS system use case with scaffolding attack fic on attacker’s rules causing the system to

make unfair and biased decisions.
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2. Selecting the best feature(s) to attack 4. Validating attack and detection

Feature selection through XAI Domain knowledge embedding festurg S o i T attack festure Sor o ot the attack
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We propose a general framework for target tar- Since this depends on the threat model occupied
get feature selection from the attackers perspec- @ system for this example we select the mov-
tive. We use a performance metric of the model 1ng target defense system. Changing the net-
to weigh the feature attributions from each XAI work resources can incur the following costs that
model before filtering them based on the domain We model as Shuffling cost(Ty,m), Configuration
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3. Proposed attack detection method

Figure 5: Variation of Halligan distance with
standard deviation of the perturbations gener-
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5. Future Work

\ 4 - Empirically testing the domain knowledge fil-
tering framework proposed
- Developing an epistemic calculation method to

find the thershold for hallican distance

- Testing if this attack is possible in other gra-
dient based XAI methods.
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